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Abstract

Illumination planning in photometric stereo aims to find
a balance between surface normal estimation accuracy and
image capturing efficiency by selecting optimal light config-
urations. It depends on factors such as the unknown shape
and general reflectance of the target object, global illumina-
tion, and the choice of photometric stereo backbones, which
are too complex to be handled by existing methods based on
handcrafted illumination planning rules. This paper pro-
poses a learning-based illumination planning method that
jointly considers these factors via integrating a neural net-
work and a generalized image formation model. As it is
impractical to supervise illumination planning due to the
enormous search space for ground truth light configura-
tions, we formulate illumination planning using reinforce-
ment learning, which explores the light space in a photomet-
ric stereo-aware and reward-driven manner. Experiments
on synthetic and real-world datasets demonstrate that pho-
tometric stereo under the 20-light configurations from our
method is comparable to, or even surpasses that of using
lights from all available directions.

1. Introduction
Photometric stereo estimates the surface normal of an

object from images taken in a fixed camera viewpoint under
different light directions. From the early work of Woodham
[24], photometric stereo can be solved with at least three
calibrated lights under the ideal Lambertian reflectance as-
sumption. However, shape recovery in the real-world scene
is more complex. For brevity, we denote generalized pho-
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Figure 1. (Left) Our online illumination planning validation setup
with the light direction being controlled by a robot arm. (Top
right) Normal estimation error under light distributions from dif-
ferent illumination planning methods. Photometric stereo using 20
lights from our illumination planning outperforms existing meth-
ods (DC05 [3] and TK22 [21]), and can even obtain comparable
results that use 100 light candidates (All). (Bottom right) Illumi-
nation planning results for a sphere object based on our ReLeaPS,
where the light directions are updated iteratively from the Q-value
map, driven by the reward of surface normal estimation errors.

tometric stereo as recovering surface normal from image
observations with consideration of general non-Lambertian
reflectances and global illumination effects such as shad-
ows and inter-reflections. To achieve generalized photomet-
ric stereo, more lights with uniform distribution are gener-
ally preferred in existing methods [17], which can be time-
consuming and impractical. To overcome this limitation,
it is desirable to develop appropriate illumination planning
strategies that can achieve similar or better accuracy with a
limited number of light directions.

Despite the importance of illumination planning, few
methods have been proposed. An optimal offline light
source placement for Lambertian photometric stereo [3] has



been achieved by minimizing the normal uncertainty. On
top of this, the illumination planning method for shadow-
robust photometric stereo [21] is further designed by opti-
mizing the light source direction adaptively based on previ-
ously captured images of an object. Both methods assume
Lambertian reflectance, limiting their effectiveness to cap-
ture complex properties of real-world material and illumi-
nation on non-Lambertian surfaces.

In the context of photometric stereo, achieving optimal
illumination planning involves addressing two primary con-
cerns: 1) determining an appropriate learning strategy for
illumination planning, and 2) integrating the image for-
mation model of generalized photometric stereo into the
pipeline. Illumination planning is a complex task that heav-
ily depends on the object’s shape, reflectance properties,
and global illumination effects. Existing methods [3, 21]
rely on heuristic rules, making it hard to handle online illu-
mination planning under real-world reflectance, global illu-
minations, and adaptively fitting to generalized photometric
stereo backbones. How to integrate a generalized image for-
mation model with a deep neural network for illumination
planning should also be considered.

Learning-based methods have demonstrated notable
achievements in handling non-Lambertian reflectance prop-
erties in generalized photometric stereo in recent years [2,
4]. These methods have significantly boosted the accuracy
of surface normal estimation. The success of learning-based
techniques motivates us to integrate illumination planning
into photometric stereo using a learning-based approach.
However, the illumination planning problem is character-
ized by an enormous search space, which makes it difficult
to obtain the ground truth light distribution. Consequently,
applying supervised learning techniques to learn illumina-
tion planning becomes prohibitively difficult.

In this paper, we propose ReLeaPS, a Reinforcement
Learning-based illumination planning for generalized
Photometric Stereo as shown in Fig. 1. Reinforcement
learning (RL) is a learning method that trains an agent
through trial-and-error, which enables the agent to effi-
ciently explore the enormous search space in a reward-
driven manner. To formulate the illumination planning
with generalized photometric stereo into the RL frame-
work, we employ a dueling deep Q-network (DQN) [22]
to learn the optimal action based on input images and light
directions. We propose a brute-force exploration strategy
for the agent to explore the light direction and iteratively
optimize its actions via Q-learning based on accumulated
observations to maximize the reward. We further trans-
form the sparse reward into a dense reward to facilitate the
learning process in RL. In summary, ReLeaPS hopes to
make Remarkable LeaPS towards more time-efficient and
accuracy-aware photometric stereo in practical application,
via the following contribution:

• proposing the first RL approach for online illumination
planning in a reward-driven manner;

• designing a dueling DQN specially tailored to general-
ized photometric stereo;

• enhancing the performance of different photometric
stereo backbones with a smaller number of inputs by
appropriate illumination planning; and

• evaluating RL-based illumination planning by building
a real data validation setup.

Results using ReLeaPS indicate that the accuracy of the
recovered normal benefitted from RL-based illumination
planning surpasses existing methods [3, 21] (Fig. 1 right).

2. Related Work
This section mainly discusses the influence of the num-

ber of illuminations for photometric stereo, optimal illu-
mination planning approaches, and reinforcement learn-
ing. We recommend relevant survey papers for comprehen-
sive reviews and benchmarks about non-learning [18] and
learning-based [14, 7] photometric stereo. We also mention
RL for vision problems very briefly.

Photometric stereo. As discussed in the survey on pho-
tometric stereo [18], despite that classical photometric
stereo [24] requires a minimum of 3 non-coplanar light di-
rections to solve the surface normal, more images under
varying lights are preferred to handle general reflectances
and complicated effects in photometric stereo. For exam-
ple, typically 10 ∼ 20 images are required for photometric
stereo with shadow analysis [1]. For outlier-based photo-
metric stereo methods [25, 16, 15, 12, 26, 20, 11], about
50 ∼ 100 images are used to reject shadows and specular
highlights. Most photometric stereo methods handling gen-
eral BRDFs (e.g., PS-FCN [2], CNN-PS [4], PX-Net [9])
show better performance by taking 50 ∼ 100 images as in-
put. To reduce the number of lights, existing methods such
as SPLINE-Net [28] and LMPS [8] consider designing spe-
cific network structures to achieve a photometric stereo un-
der a sparse light distribution. Instead of developing new
photometric stereo methods, we reduce the number of lights
while maintaining the normal estimation accuracy by better
planning the light distribution during data capture.

Optimal illumination planning. We summarize illumi-
nation planning approaches in photometric stereo in Table 1
by considering various factors such as the object shape,
general non-Lambertian reflectance, online/offline manner,
and global illumination effects (e.g., cast shadows, inter-
reflections). Drbohlav and Chantler (DC05) [3] proposed
the first illumination planning work in Lambertian photo-
metric stereo considering the camera noise, showing that
the distribution of orthogonal triplets of lights is optimal.
This illumination setting is offline as the optimized lights



Table 1. Summary of illumination planning methods.

Method
Reflectance

model
Offline/
online

Shape
aware

Global illumination

Shadows Inter-reflection

DC05 [3] Lambertian Offline ✗ ✗ ✗

TK22 [21] Lambertian Online ✓ ✓ ✗

IK23 [5]
Non-

Offline ✗ ✓ ✓
Lambertian

Ours
Non-

Online ✓ ✓ ✓
Lambertian

are independent of the shape and reflectance of the scene.
Tanikawa et al. (TK22) [21] presented an online illumina-
tion planning related to the shape and shadows in the scene.
The light direction is iteratively chosen based on the criteria
that the shadow effects are minimized in the newly captured
images. To handle non-Lambertian reflectance, Iwaguchi
and Kawasaki (IK23) [5] proposed a near-light photomet-
ric stereo method and found optimal light patterns for dif-
fuse and Phong materials from the training data. How-
ever, the optimal illumination is offline in the test phase
and only adapted to the corresponding near-light photomet-
ric stereo setup [5]. We propose an online illumination
planning method based on reinforcement learning, produc-
ing optimal light directions iteratively considering the shape
and non-Lambertian reflectance, and can be adapted to dif-
ferent photometric stereo backbones.
RL for vision problems. Starting from the [19], RL is
first proposed as a mathematical problem in which an agent
learns through interaction with an environment. The agent
receives rewards or punishments for each action it takes,
allowing it to learn which actions lead to better outcomes.
Compared to supervised learning, RL is particularly use-
ful in scenarios where it is not feasible to obtain labeled
data. RL has now been used in low-level vision tasks such
as low-light image enhancement [27], distorted color en-
hancement [13], and denoise [13]. However, RL has not
been explored in the task of photometric stereo and illumi-
nation planning. We introduce a novel approach for light
distribution selection in generalized photometric stereo by
integrating a reward function with RL principles.

3. Problem Formulation
This section begins with an introduction to the image

formation model and a definition of the photometric stereo
task. Subsequently, we describe the problem of illumina-
tion planning in generalized photometric stereo and present
how it can be formulated using RL.

3.1. Image Formation Model

Given an orthographic camera with a linear radiometric
response and T calibrated directional lights, we capture T
image observations I = {I1, I2, · · · , IT } ∈ RH×W×T by
turning on/off the lights one after another. The image in-
tensity profile I(p) ∈ RT at pixel position p under varying

lights can be formulated as

I(p) = s⊙ ρ⊙max(Ln,0), (1)

where s and ρ are T -dimensional vectors representing
the global illumination effects (e.g., cast shadows, inter-
reflections) and non-Lambertian reflectance under T light
directions L = [l1, l2, · · · , lT ] ∈ RT×3, n ⊂ S2 ∈ R3 rep-
resents the surface normal at the pixel position p.

Given image observations I and calibrated lights L, pho-
tometric stereo (denoted as a function PS(·)) aims at recov-
ering a surface normal map N ∈ RH×W×3 containing the
normal vector n estimated at each pixel position, i.e.

N = PS(I,L). (2)

3.2. Illumination Planning Driven by RL

As shown in Eq. (2), the accuracy of the estimated sur-
face normal is related to the choice of photometric stereo
backbones PS(·) and light distribution L. We define the
illumination planning problem for generalized photometric
stereo as follows,

Definition 1 Suppose that the surfaces are expected to be
illuminated by a total of T lights with the first light direction
fixed to l1, the problem is to find the next T −1 optimal light
directions such that under these total T light directions L∗

T

and the corresponding image observations the estimated
surface normal from a given photometric stereo backbone
PS(·) has the lowest angular error w.r.t. the ground truth
Ñ , i.e.,

L∗
T = argmin

LT

1

HW

∑
i,j

(
1− PS(IT ,LT )ij · Ñij

)
. (3)

The ground truth of light distribution is difficult to obtain
as it is jointly influenced by complex non-Lambertian re-
flectance, global illuminations, shape variations, and photo-
metric stereo backbones. Even for a fixed scene with ground
truth normal and a specific photometric stereo backbone,
finding the combination of T − 1 optimal light directions in
a brute-force manner still has an enormous searching space
as T increases. Therefore, it is unrealistic to formulate illu-
mination planning as a supervised learning task.

Instead, we solve the illumination planning via an itera-
tive trial-and-error manner in a total of T − 1 steps, which
can be formulated as an RL problem. As shown in Fig. 2,
beginning from an initial light direction and its correspond-
ing image observation, we stack the image sequence and the
light directions at each step, t ∈ {1, . . . , T}, as state St in
RL. The illumination planning algorithm corresponding to
the agent in RL and denoted as a function Agent(·) gener-
ates the next light directions denoted as At, which corre-
sponds to the action in RL. This illumination planning and
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Figure 2. The illumination planning pipeline of ReLeaPS. (Red
block) The agent observes the state St−1 and selects action At

from Q-values. (Blue block) The environment captures a new im-
age based on action At to form a new state St. (Green block) The
angular error Et between the predicted PS(I,L) and ground truth
normals Ñ is calculated to form the reward Rt. Then the network
is updated based on reward Rt. The process is a repetitive cycle
with the above elements until the episode is terminated.

state update process can be formulated as:

At+1 = lt+1 = Agent(St),

St+1 = St ∪ {It+1, lt+1} .
(4)

By repeating the above equations iteratively for T − 1
times, the light distributions LT and the corresponding im-
age set IT are generated as one illumination planning trial,
which is then fed to a PS(·) for estimating the surface nor-
mal. We define the reward in RL with the angular error
between the estimated and the ground truth surface normal,
and use it as feedback to update the agent for better illumi-
nation planning in the next trial.

Given the definition of illumination planning and its for-
mulation based on RL, we show the details of the reward
and agent network in RL in the next section, which is specif-
ically designed to fit the context of photometric stereo.

4. Proposed Method
In this section, we introduce our proposed ReLeaPS,

where the reward function, agent network, and exploration
strategy are specifically designed based on photometric
stereo prior knowledge for effective illumination planning.

4.1. Sparse-to-dense Reward Design

As shown in Fig. 2, we define the angular error map
Et ∈ RH×W between the ground truth and estimated sur-

face normal from images and lights at the t-th state,

Et =
(
1− PS(It,Lt)ij · Ñij

)
. (5)

Following Definition 1, the optimization target is to min-
imize the mean of the angular error map at the T -th state,
which can be directly converted to a single reward map at
time T :

Rt =

{
0, 2 ≤ t < T,

−Et, t = T.
(6)

However, this direct reward strategy is only defined for
the last state, leading to the problem of sparse reward set-
tings. RL under sparse rewards is challenging as the agent
can only receive limited feedback and underestimate the
value of actions taken from other states. The sparse re-
ward can lead to slow learning, exploration problems, lack
of feedback, and difficulty in generalization. This highlights
the importance of designing effective reward functions and
exploring alternative techniques to encourage faster learn-
ing. First, we transform the angular error in the last state to
the delta angular error between neighboring states, i.e.,

Rt = Et−1 −Et, 2 ≤ t ≤ T. (7)

As the accumulation of sparse and dense Rt are the same
in all T − 1 steps, we keep the optimization target but
avoid the propagation problem in sparse rewards, which are
shown to be effective for accelerating the RL training.

We observe that the existing method [21] conducts the
illumination planning by only considering the one-step ex-
pected angular error Et if adding the light lt. Motivated
by their illumination planning practice on the photometric
stereo, we improve the reward design by adding more at-
tention to the one-step angular error Et. This technique is
called reward shaping, formulated as

Rt = Et−1 −Et − αEt, 2 ≤ t ≤ T, (8)

where α is the weight of the reward shaping term. Although
the target is different from the optimization target in Defini-
tion 1, we empirically discover that this new dense reward
strategy is more robust and efficient in RL training.

4.2. Agent Network for Illumination Planning

Overview of dueling DQN. First, we briefly introduce
the background knowledge about relevant RL networks
used in our design. We adopt dueling DQN [22] as our agent
network to predict optimal light directions. DQN defines
Q-value as the measure of expected cumulative reward that
an agent can obtain by taking a specific action in a given
state. Instead of choosing the action with maximum one-
step reward in Eq. (8), DQN selects the one with maximum
Q-value to determine the action At leading to the maximum



Algorithm 1 Illumination planning in generalized photo-
metric stereo with reinforcement learning

1: repeat
2: Initialize l1 at (0, 0, 1)⊤ direction
3: Select observation image I1 from dataset
4: Combine l1 and I1 to form initial state S1

5: for t = 2, . . . , T do
6: Agent choose the lt (i.e., At) based on state St−1

7: Select observation image It from dataset
8: Combine lt, It, and previous St−1 to form state St

9: Estimate normal PS(It,Lt) in state St

10: Calculate angular error Et between PS(It,Lt) & Ñ
11: Compute reward Rt from angular error Et

12: Store St−1,At,Rt,St in replay buffer
13: Sample batch from replay buffer
14: Update neural network
15: end for
16: until Maximum number of episodes has been reached

expected long-term reward at state St. To improve the ef-
ficiency and stability of DQN, dueling DQN, as a variant
of DQN, separates the estimation of the state value function
Val(St) and the advantage function Adv(St,At+1). The
state value records the expected cumulative reward that an
agent can obtain from a given state S, while the advantage
represents the additional expected reward by taking a spe-
cific action A in that state S. The Q-value function for duel-
ing DQN is a combination of the state value and advantage:

Q(St,At+1) = Val(St) + Adv(St,At+1)

− 1

|A|
∑
At+1

Adv(St,At+1),
(9)

where |A| is size of action space. The Q-Network is trained
by the Bellman equation and the loss function L is:

Q′(St,At+1) = Rt+1 + γmax
At+2

Qtarget(St+1,At+2),

L =
1

T − 1

T−1∑
t=1

(Q(St,At+1)−Q′(St,At+1))
2
,

(10)

where γ is the discount factor in RL, Qtarget is the target
network in RL, which is saved from Q every 1000 step. We
use the gradient descent method to update Q parameters.

During the test stage, we only need to evaluate the ad-
vantage network while discarding the state value network.
The selected light direction A∗

t+1 is:

A∗
t+1 = argmax

At+1

1

HW

∑
i,j

Adv(St,At+1)ij . (11)

We use a replay buffer in our dueling DQN design to
learn from prior experiences and enhance sampling effi-
ciency. Specifically, a replay buffer stores past experiences

of the agent in the form of transitions (St−1,At,Rt,St).
The agent samples a mini-batch of transitions from the re-
play buffer to update its Q-value function. We specially de-
sign an exploration strategy to facilitate exploration and as-
sist in network training (details in supplementary material).
The overall pipeline of our agent network for illumination
planning is summarized in Algorithm. 1.
Architecture design of dueling DQN. We design the net-
work structure of the state value network and the advantage
network following the insights from learning-based photo-
metric stereo methods. As discussed in [29, 7], the net-
work architecture in learning-based photometric stereo are
usually divided into the per-pixel branch and the all-pixel
branch. The methods in the per-pixel branch such as CNN-
PS [4] address the inter-image intensity variation at each
pixel via an observation map, while the methods in the all-
pixel branch such as PS-FCN [2] pay more attention to the
intra-image intensity variation of each input image via im-
age feature extraction. The dueling DQN architecture is de-
signed by leveraging priors from the above two branches
together.

From t images of shape H×W in state St, we apply the
feature extraction module from PS-FCN [2] to obtain the
4D global feature map of shape H × W × t × C1, where
C1 is the dimension of the feature vector (Fig. 3 (a)). In the
advantage network, we treat the global feature map as an
image where each pixel contains t stacked feature vectors
of size C1 (Fig. 3 (b)). For every pixel, we project each of
its feature vectors to a position on a per-pixel 3D observa-
tion feature [4] with the size of Ly×Lx×C1 where Ly and
Lx represent the number of discretized light directions ver-
tically and horizontally, according to the light directions in
St. Each observation feature is passed to a series of shared-
weight convolutional layers to get the advantage feature of
shape Ly × Lx. This feature from all pixels is combined to
form the advantage map A ∈ RH×W×Ly×Lx .

In the state value network, the global feature map is
passed through multiple convolutional layers to estimate the
state value map V ∈ RH×W×1×1 (Fig. 3 (c)). Given the
output of the advantage map and state value map, we can
calculate the Q-value map, Q ∈ RH×W×Ly×Lx following
Eq. (9), which is used to infer the optimal light direction for
the next state.

4.3. Datasets and Implementation

In this paper, we employ rendered images from synthetic
datasets (Blobby [6] and Sculpture [23]) for model training
and evaluate the generalization ability using real datasets
(DiLiGenT [18] and DiLiGenT102 [14]).

Synthetic dataset processing. Based on the synthetic
datasets in [6, 23], we randomly split their geometries into
training and test sets in a 4:1 ratio and apply random scale,
rotation, and translation for data augmentation. This results
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Figure 3. The network architecture of dueling DQN [22] for ReLeaPS, which contains (a) the global feature extraction, (b) the advantage
network, and (c) the state value network. The global feature extraction is to extract the features pixel-wisely from input images into a feature
map; the advantage network transforms the feature map into an observation feature and predicts the action based on light directions; the
state value network extracts the non-Lambertian effects from the feature map for prediction. The Q-value function in Eq. (9) is expressed
as the sum of the state value and advantage function.

in 500 training samples and 50 test samples for each dataset.
We use a physically-based ray-tracing renderer to generate
images under different light distributions, with a spatial res-
olution of 256× 256.
Real dataset acquisition and benchmark. We evaluate
the generalization ability of our proposed method using two
real datasets, DiLiGenT [18] and DiLiGenT102 [14]. To
obtain performance results for DiLiGenT102 [14], we sub-
mit the normal map to the benchmark website1. To further
validate the efficacy of our method in real-world scenarios,
we build a setup with a movable light source that enables il-
lumination from any direction within the upper hemisphere,
as shown in Fig. 1. We show one of the captured scenes
LionHead in the main paper2.

The real datasets in [18, 14] for evaluation are captured
in advance and exhibit limited coverage of images under a
fixed light distribution, leading to a restricted action space
for our method during evaluation. To tackle this issue and
allow our approach to accommodate varying light distribu-
tions, we map each light direction to its nearest neighbor
within our predefined settings. We exclude the Q-values of
light directions that are not observed and select the action
from the remaining set.

Implementation details. Our framework is implemented
in PyTorch. The total steps for illumination planning are 20,
i.e., T = 20. The other parameters are set to γ = 0.9 and

1https://photometricstereo.github.io/
diligent102.html

2Please refer to the supplementary video showing our online illumina-
tion planning and capture process.

α = 0.5. We train our model using AdamW [10] optimizer
for 10, 000 episodes. The learning rate is 10−5 and weight
decay is 10−8 respectively. The replay buffer size is set to
16, 384. It takes about 2 days to train on a single NVIDIA
GeForce RTX 3090 graphics card.

5. Experiments
Our experimental evaluation consists of four subsec-

tions: 1) improving photometric stereo backbones, 2) ilumi-
nation planning method comparison, 3) quantitative analy-
sis on real benchmarks, and 4) ablation studies.

5.1. Improving Photometric Stereo Backbones

Theoretically, our proposed method can be employed in
conjunction with any photometric stereo backbone that uti-
lizes a set of images and light directions as input. We eval-
uate ReLeaPS on three representative photometric stereo
backbones: the least square (LS) [24] method represent-
ing conventional methods, CNN-PS [4] representing per-
pixel learning methods, and PS-FCN [2] representing all-
pixel learning methods. In accordance with PS-FCN [2],
we employ a random selection of 20 light directions to rep-
resent the vanilla performance of the existing photometric
stereo backbone method under limited illumination. Next,
we compare the vanilla performance of photometric stereo
backbones by evaluating them using ReLeaPS under 20
light directions to demonstrate the improved performance
achieved by our method. The experimental results, pre-
sented in Table 2, demonstrate a reduction in mean angular
error across all datasets and photometric stereo backbones



Table 2. Quantitative comparisons of different illumination plan-
ning approaches in terms of mean angular error on Blobby [6],
Sculpture [23], DiLiGenT [18], and DiLiGenT102 [14] datasets
using different photometric stereo backbones with 20 lights.
‘Rnd.’ stands for the random selection of light directions averaged
over 10 evaluations and ‘BF’ stands for brute-force strategy.

Dataset PS
backbone Rnd. Illumination planning Oracle

DC05 [3] TK22 [21] Ours All BF ∗

LS [24] 3.4 3.4 3.5 2.9 3.3 1.9
Blobby CNN-PS [4] 7.2 12.3 7.2 4.8 2.3

[6] PS-FCN [2] 3.1 3.4 3.6 2.6 2.5 N/A

LS [24] 10.6 11.3 10.2 9.7 10.5 7.0
Sculpture CNN-PS [4] 12.3 20.9 10.2 7.6 5.2

[23] PS-FCN [2] 7.0 7.4 7.1 6.5 5.9 N/A

LS [24] 14.0 13.9 13.8 13.8 13.9 12.6
DiLiGenT CNN-PS [4] 10.2 9.9 12.1 10.1 7.4

[18] PS-FCN [2] 8.3 7.8 8.1 7.7 7.5 N/A

LS [24] 24.6 24.7 24.4 23.5 22.1
DiLiGenT102 CNN-PS [4] 18.3 21.3 18.3 17.7 16.4

[14] PS-FCN [2] 15.9 15.9 16.6 15.8 15.9
N/A

∗Some of the results are not available (N/A) due to high computa-
tional cost (CNN-PS [4] and PS-FCN [2]) or lack of ground truth normal
(DiLiGenT102 [14]).

when comparing the ‘Rnd.’ column (vanilla performance)
with the ‘Ours’ column (enhanced performance). On aver-
age, ReLeaPS achieves an improvement in a mean angular
error of 1.02 degrees. Remarkably, for rows 1, 4, 7, and
12, our performance using only 20 lights even outperforms
that of using all (about 100) input images, demonstrating
the effectiveness of our method in enhancing many differ-
ent photometric stereo backbones.

5.2. Illumination Planning Method Comparison.

We conduct a comparative study of ReLeaPS with
two existing illumination planning approaches, namely
DC05 [3] and TK22 [21], under 20 lights. For DC05 [3],
we select the observation configuration with a vertical light
direction as it yields better performance. The results pre-
sented in Table 2 demonstrate that our proposed method
outperforms other illumination planning methods in terms
of a mean angular error, except for the CNN-PS [4] back-
bone on the DiLiGenT [18] benchmark. We attribute this
to the narrow light distribution (centered in a small range)
in DiLiGenT, which limits the ability to demonstrate the
advantage of using RL for illumination planning. DiLi-
GenT [18] use light sources in a planar grid, which only
covers a small portion of the full hemisphere, while our ren-
dered synthetic datasets and DiLiGenT102 [14] set the light
sources on the full hemisphere. This design difference may
have an impact on the performance of illumination planning
methods. Overall, our method improves the performance of
mean angular error using 20 light directions by 2.46 com-
pared to DC05 [3] and 1.03 compared to TK22 [21].

Additionally, we employ a brute-force (BF) strategy for
illumination planning in the LS [24] method on specific
rows (1, 4, and 7). This method exhaustively searched all
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Figure 4. Quantitative evaluation of illumination planning meth-
ods w.r.t. to the different number of light directions on real-world
benchmarks: DiLiGenT [18] (left) and DiLiGenT102 [14] (right).
The mean angular error is averaged among LS [24], CNN-PS [4],
and PS-FCN [2] backbones.

possible light directions for one step and selected the one
with the lowest mean angular error compared to the ground
truth. The results demonstrate that this oracle method
achieves an average improvement of 1.63 in mean angular
error compared to our method, highlighting the potential for
further improvements in illumination planning.

5.3. Quantitative Analysis on Real Benchmarks

ReLeaPS is designed to minimize the mean angular error
under 20 lights while also improving performance across a
range of 3 to 20 lights. We compare our proposed method
with other illumination planning methods under varying
numbers of light directions on two real datasets, DiLiGenT
[18] and DiLiGenT102 [14]. We show the average perfor-
mance of mean angular error among all three photometric
stereo backbones (LS [24], CNN-PS [4], and PS-FCN [2])
in Fig. 4. Our results demonstrate that ReLeaPS outper-
forms other illumination planning methods for the most
number of light directions, except for 14 ∼ 20 lights on the
DiLiGenT [18] dataset. We attribute this to the narrow light
distribution in DiLiGenT [18], as described in Section 5.2.
On the DiLiGenT102 [14] side, we achieve the same 20-
light performance as TK22 [21] using only 14 lights. Over-
all, ReLeaPS achieves similar or better performance than
other illumination planning methods, even with a smaller
number of lights.

Furthermore, the effectiveness of ReLeaPS is being val-
idated through qualitative comparisons in Fig. 5, where it is
compared to other methods using real data. Specifically, on
the left side of the figure, the presence of shadows in the red
circle of READING from the DiLiGenT [18] dataset re-
sults in a significant angular error. Although DC05 [3] and
TK22 [21] can recover these areas using 15 lights, ReLeaPS
accomplishes comparable results with only 7 lights. On the
right side of Fig. 5, the LIONHEAD object, captured us-
ing our setup, is challenging to reconstruct using DC05 [3].
However, ReLeaPS efficiently recovers the normal map of
the object with only 11 lights. These results authenticate the
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Figure 5. Qualitative comparison of recovered surface normals and error maps for (left) READING (from DiLiGenT [18]) and (right)
LIONHEAD (captured using our setup) using different illumination planning methods (i.e., DC05 [3], TK22 [21], and Ours) with increasing
light directions (3, 7, 11, 15, and 20 lights) in CNN-PS [4] backbone. The red circle indicates a region with shadows that cannot be
effectively recovered by CNN-PS [4], resulting in a large angular error.

Table 3. Ablation studies on ReLeaPS with 20 lights
on Blobby [6], Sculpture [23], DiLiGenT [18], and
DiLiGenT102 [14] datasets using the LS [24] backbone: in-
cluding generalized image formation, reward design, and network
design (simplified to ‘ReLeaPS w/ Lambert’, ‘ReLeaPS w/o
reward’, and ‘ReLeaPS w/ MLP’ respectively).

Dataset
ReLeaPS ReLeaPS ReLeaPS

Ours
w/ Lambert w/o reward w/ MLP

Blobby [6] 3.7 3.5 3.3 2.9
Sculpture [23] 12.9 11.9 10.6 9.7
DiLiGenT [18] 14.8 13.9 13.9 13.8

DiLiGenT102[14] 24.2 24.1 24.5 23.5

effectiveness of ReLeaPS in comparison to other illumina-
tion planning techniques.

5.4. Ablation Studies

We conduct ablation studies by removing the impor-
tant components of ReLeaPS, i.e., the inclusion of complex
light transport effects in image formation (simplified to ‘Re-
LeaPS w/ Lambert’), a deep dueling network for general-
ized photometric stereo (simplified to ‘ReLeaPS w/ MLP’),
and a sparse-to-dense reward function (simplified to ‘Re-
LeaPS w/o reward’). More details about the simplified ver-
sions of ReLeaPS are shown in the supplementary material.

The results in Table 3 demonstrate that removing each part
of ReLeaPS causes harm to the performance, proving the
effectiveness of our specific designs in ReLeaPS.

6. Conclusion
We propose ReLeaPS, an RL-based online illumination

planning method for generalized photometric stereo, which
shows promising results under a limited number of illumi-
nations. However, there are still some limitations:

• Compared with devices using fixed light sources, the
moving parts in our validation setup make it less
portable and slow in movement;

• ReLeaPS assumes the classic photometric stereo setup
of distant light and orthographic camera. Near light
and perspective camera models are not considered.

We hope our work shows promising potential for fur-
ther improvements in illumination planning for photometric
stereo and related applications.
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